Comparison of in-hospital and 24-Hour Ambulatory Electrocardiography in Dogs with Heart Disease

Ekrem Çağatay Çolakoğlu, Mehmet Şahal

Department of Internal Medicine, Faculty of Veterinary Medicine, University of Ankara, Dışkapı, Ankara

ABSTRACT

Background/Aim: The purpose of the study was to compare the short and long term individual electrocardiographic findings in preclinical (asymptomatic) and clinical (symptomatic) dogs with heart disease.

Material and Method: 2 minute clinic ECG and 24-h Holter monitoring were performed in 30 dogs. Disturbances in impulse conduction, impulse formation and heart rate were assessed.

Results and Conclusion: A significant linear correlation was found between the average heart rates detected by clinic ECG and Holter monitoring in preclinical group: \[y = 45.33 + 1.023x \] \((P<0.05, r=0.46) \) as well as in clinical group: \[y = -10.39 + 1.546x \] \((P<0.05, r=0.73) \). Of 30 dogs, 19 had cardiac arrhythmias on 2 minute clinic ECG. 24-h Holter records revealed the presence of cardiac arrhythmias in 29 dogs. 11 dogs with normal sinus rhythm on clinic ECG had clinically significant arrhythmias on 24-h Holter monitoring. This study represents Holter-detected significant changes in cardiac arrhythmias. 24-h Holter monitoring provides the best assessment of the presence, frequency and complexity of the cardiac arrhythmias in dogs with heart disease.

Key Words: Arrhythmia, canine, ECG, holter, supraventricular, ventricular

Kalp Hastalıklı Köpeklerde Klinik Elektrokardiyografi ile 24 Saat Elektrokardiyografinin Karşılaştırmılması

ÖZET

Özbişli/Amaç: Bu çalışma ile; semptomatik ve asemptomatik kalp hastalıklı köpeklerde kısa ve uzun dönem elektrokardiyografik bulgularının karşılaştırılmasını amaçlandı.

Materyal ve Metot: 30 köpekte 2 dakikalık klinik EKG ve 24 saat Holter kaydı gerçekleştirilmiştir. Impuls oluşum, iletim ve kalp atım saysındaki değişiklikler değerlendirildi.

Bulgular ve Sonuç: Klinik EKG ve Holter kaydı ile belirlenen ortalama kalp atım sayıları arasında sırasıyla; preklinik grupta: \[y = 45.33 + 1.023x \] \((P<0.05, r=0.46) \) ve klinik grupta: \[y = -10.39 + 1.546x \] \((P<0.05, r=0.73) \) lineer korelasyon belirlendi. 30 köpeğin 19'unda 2 dakikalık klinik EKG ile kardiyak aritmiler belirlendi. 24 saat Holter kaydı ise 29 köpekte kardiyak aritmileri ortaya koydu. Klinik EKG'de normal sinüs ritmi belirlenen 11 köpeğin 24 saat Holter kaydında klinik olarak anlamlı aritmiler tespit edildi. Çalışmada, kardiyak aritmilerde Holter ile belirlenmiş anlamlı değişiklikler görülüyordu. Kalp hastalıklı köpeklerde; kardiyak aritmilerin varlığı, frekans ve kompleksitesini belirlemeye 24 saat Holter kaydı en iyi değerlendirmeyi sağlamaktadır.

Anahtar Kelimeler: Aritmi, EKG, holter, kıkık, supraventriküler, ventriküler

Correspondence to: Department of Internal Medicine, Faculty of Veterinary Medicine, University of Ankara, Dışkapı, Ankara. Email: colakoglu@ankara.edu.tr
Introduction

Most of dogs are referred to veterinary hospitals in advanced stages of heart disease. However, dogs with early stage heart disease have the increased risk of cardiac arrhythmias (Petrie, 2005). Cardiac arrhythmias defined as a disturbance in impulse conduction and formation or heart rate are valuable markers of heart diseases in dogs (Petrie, 2005; Aptekman et al., 2010). Clinic electrocardiography (ECG) has often limitations in detecting underlying or early stage cardiac arrhythmias because of the short recording period and transient nature of the arrhythmias (Miller et al., 1999; Eastwood and Elwood, 2003). It has also been reported that arrhythmias detected by clinic ECG comprise only 0.14% of daily rhythm (Petrie, 2005). The number and types of arrhythmias in parallel with the progression of heart disease increases over time and following that dogs starts to show clinical signs. Detecting the cardiac arrhythmias in early and advanced stage of heart disease is essential for diagnostic and prognostic purposes (Calvert et al., 2000; Wess et al., 2010). The purpose of the current study was to compare the short and long term individual electrocardiographic findings in symptomatic and asymptomatic dogs with heart disease.

Materials and Methods

Animals

The present study was a prospective, single institution, hospital-based study conducted at Small Animal Veterinary Teaching Hospital between July 2011 and April 2012. Thirty seven privately owned dogs with heart disease were prospectively enrolled in the study. The dogs were not receiving any medication at the time of referral investigation and during diagnostic applications. The dogs with heart disease were classified as preclinical (asymptomatic) and clinical (symptomatic) according to International Small Animal Cardiac Health Council (ISACHC) recommendations based on cardiac clinical signs and thoracic radiographs. ISACHC classification included the followings: I, asymptomatic dogs; Ia, asymptomatic dogs without cardiomegaly; Ib, asymptomatic dogs with an evidence of cardiac compensation (cardiomegaly) on radiographs; II, mild to moderate heart failure. Clinical signs evident at rest and mild exercise; III, advanced heart failure. Clinical signs of CHF are immediately obvious; Ila, home care possible; IIla, hospitalization required. Dogs were excluded if they had clinical signs of non-cardiac disease on history, clinical examination and routine blood works. All dogs were treated appropriately. Written owner consent was obtained and the ethics committee of the institution (report no: 2011 107 402) approved the protocol used in this study.

Examination procedure

All dogs were examined by a standardized protocol including physical examination, routine blood work, radiography, echocardiography, 2 minute clinic ECG and 24-h Holter monitoring. Two dimensional B-M mode, color-flow and multi frequency ultrasound system, Esaote Biomedica, Firenze, Italy) were performed to identify the structural heart disease. Clinic 6-lead ECG (Cardiofax ECG 6851K, Nihon Kohden Corporation, Tokyo 161, Japan) was recorded for 2 minutes to specify heart rate (during 6-s period) and rhythm all dogs lying right lateral recumbency. Clinic ECGs were performed before 30 Holter studies. A 5-lead/3 channel holter recorder (DR 200/ HE Holter and Event Recorder, NorthEast Monitoring, Inc., Maynard, US) was attached to the dogs in a standard precordial placement. Before the electrode placement, the skin at the electrode sites was prepared by shaving and cleaning with alcohol. Specially designed dog vests (Dog vests, DogLeggs, LLC, Reston, USA) were used to secure the holter recorder and leads. The daily routine in each case including sleeping-bed time, awakening and exercise were noted in a diary by the owners. At the end of the 24-h recording period; recorder and electrodes removed. Arrhythmia identification and the summary of minimum, average and maximum heart rate (HRmin, HRavg, HRmax) were performed by a commercially available software (Holter LX Analysis Software, NorthEast Monitoring, Inc., Maynard, USA). Cardiac arrhythmias were evaluated as ventricular, supraventricular and bradyarrhythmias. Arrhythmia variables included the followings: Sinus bradycardia (SB), >4 sinus complexes at a HR <70 bpm (Edwards, 2000); sinus pause (SP), NN intervals >2.0 seconds; sinu arrhythmia, as a NN interval >180% longer than the previous NN interval (Hai al et al., 1991); sinus tachycardia (ST), >3 sinus complexes at a HR>150 bpm; supraventricular premature complexes (SVPC), a premature beat with abnormal P wave conducting a normal appearing QRS complex; supraventricular tachycardia (SVT), >3 supraventricular complexes at a HR >150 bpm, where the first complex was premature, while the following have NN interval shorter than or equal to the previous NN interval (Kittleson, 1998); ventricular premature complex (VPC), a premature wide and bizarre QRS complex, not associated with a P wave, accompanying a large T wave of opposite polarity (Kittleson, 1998) and ventricular tachycardia (VTAC), as a sequence of more than three consecutive QRS complexes at a HR >180 bpm (Edwards, 2000). All holter records were manually checked by the same operator to confirm the arrhythmia identification. During the diagnostic examinations none of dogs were sedated.

Statistical analysis

Statistics were performed with commercially available software (Statistical Package Version 14.01, SPSS Inc, Chicago, IL, USA). Checking the normality of data was tested with Shapiro-Wilk test. The relationship between the heart rates on ECG and Holter was analysed with paired sample T-test. Mean differences between the average heart rates detected by ECG and Holter were calculated. Mean differences between the groups for the overall presence of arrhythmias on both ECG and Holter were evaluated with fisher exact test. Results were presented as mean ± standard error of the individual groups. Statistical significance was defined as a value of P < 0.05.

Results

Data were collected from 37 dogs including Terrier types (9), Kangal Dogs (4), Cavalier King Charles Spaniels (3), Labrador Retriever (3), Boxers (3), Miniatura Pinschers (3), German Shepherd Dogs (2), Mongrel Dogs (2), Golden Retriever (1), Doberman Pinscher (1), Dalmatian (1), Irish Setter (1), Pekingese (1), Pomeranian (1), Beagle (1) and Shi Tzu (1). However, 7 dogs were excluded from the study because of excitation (1 Terrier type and 1 Kangal Dog), the diagnosis of Cushing’s disease (1 Terrier type) and <24 hour data on Holter records (2 Terrier types and 2 Mongrel Dogs). Structural heart disease was identified in 28 dogs (9 dogs in clinical group and 19 dogs in preclinical group). Structural abnormalities diagnosed in clinical group were Endocardiosis of the Mitral Valve (55.5%), Dilated Cardiomyopathy (22.2%), Tricuspid Valve Insufficiency (11.1%) and Hemangiosarcoma (11.1%). Dogs with structural heart disease in preclinical group had Endocardiosis of the Mitral Valve (38.09%), Dilated Cardiomyopathy (33.3%), Aortic Stenosis (4.76%), Tricuspid Valve Dysplasia (9.52%) and Unilateral Papillary Muscle Hypertrophy (4.76%). Two dogs had no evidence of structural heart disease. A total of 60 electrocardiographic examinations, including 2 minute clinic ECG and 24-h Holter monitoring, were performed on 30 dogs. There were no clinically significant differences.
Holter monitoring could not documented cardiac arrhythmia. The bradyarrhythmias in 8 dogs (26.66%). Of 30 dogs; in only 1, lasting 48 minutes. Clinic ECG and 24-h Holter records revealed Holter monitoring. Of 4 dogs with persistent atrial fibrillation population. No dogs demonstrated sustained VTAC during 24-h Holter monitoring. Of 2 minute clinic ECG had cardiac arrhythmias on 24-h Holter monitoring (23 dogs, 76.66%). VPCs diagnosed in 5 dogs (16.66%) on clinic ECG SVPCs were not frequent on clinic ECG, whereas 7 dogs (23.33%) had SVPCs on 24-h Holter records from 2 to 15 beats. VPCs diagnosed in 5 dogs (16.66%) on clinic ECG were much more common on 24-h Holter monitoring (23 dogs, 76.66%). The total number of VPC (included R on T) ranged from 2 to 594 beats on 24-h Holter monitoring. The 24-h Holter findings of nonsustained VTAC were found in 16.66% of the total population. No dogs demonstrated sustained VTAC during 24-h Holter monitoring. Of 4 dogs with persistent atrial fibrillation on 2 minute clinic ECG, 1 had paroxysmal atrial fibrillation lasting 48 minutes. Clinic ECG and 24-h Holter records revealed the bradyarrhythmias in 8 dogs (26.66%). Of 30 dogs; in only 1, Holter monitoring could not documented cardiac arrhythmia.

Table 1. Presence of cardiac arrhythmias on ECG and 24-h Holter monitoring in preclinical group.

<table>
<thead>
<tr>
<th>Cardiac Diagnosis (ISACHC class I)</th>
<th>Percentage of Total n (%)</th>
<th>Presence of Arrhythmias on Clinic ECG n (%) (ISACHC class)</th>
<th>Presence of Arrhythmias on 24-h Holter Monitoring* n (%) (ISACHC class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS</td>
<td>2 (9.52)</td>
<td>2 (9.52) (Ia:1, Ib:1)</td>
<td>2 (9.52) (Ia:1, Ib:1)</td>
</tr>
<tr>
<td>DCM</td>
<td>7 (33.3)</td>
<td>5 (23.8) (Ia:1, Ib:4)</td>
<td>7 (33.3) (Ia:2, Ib:5)</td>
</tr>
<tr>
<td>MVI</td>
<td>8 (38.09)</td>
<td>3 (14.28) (Ia:2, Ib:1)</td>
<td>7 (33.3) (Ia:2, Ib:5)</td>
</tr>
<tr>
<td>UPMH</td>
<td>1 (4.76)</td>
<td></td>
<td>1 (4.76) (Ia:1)</td>
</tr>
<tr>
<td>AS</td>
<td>1 (4.76)</td>
<td>1 (4.76) (Ia:1)</td>
<td>1 (4.76) (Ib:1)</td>
</tr>
<tr>
<td>TD</td>
<td>2 (9.52)</td>
<td>1 (4.76) (Ia:1)</td>
<td>2 (9.52) (Ia:1, Ib:1)</td>
</tr>
<tr>
<td>Total</td>
<td>21 (100)</td>
<td>12 (57.14)</td>
<td>20 (95.23)</td>
</tr>
</tbody>
</table>

Detailed description of cardiac arrhythmias in dogs with and without cardiac signs were shown in Table 3 and 4.

The HRmax frequency recorded with clinic ECG in preclinical and clinical groups was 135.24±8.20 bpm and 154.56±16.28 bpm, respectively. The HRmax detected by 24-h Holter monitoring in preclinical and clinical groups was respectively 87.90±6.33 bpm and 106.67±7.67 bpm. A significant linear correlation was found between the HRmax detected by clinic ECG and Holter monitoring in preclinical group: y = 45.33 + 1.023x (P<0.05, r=0.46) as well as in clinical group: y = -10.39 + 1.546x (P<0.05, r=0.73). The ECG HRmax in groups was significantly higher than HRmean recorded with Holter monitoring. The 24-h Holter results showed no differences between the groups for HRmin and HRmax.

Table 2. Presence of cardiac arrhythmias on ECG and 24-h Holter monitoring in clinical group.

<table>
<thead>
<tr>
<th>Cardiac Diagnosis (ISACHC class II-III)</th>
<th>Percentage of Total n (%)</th>
<th>Presence of Arrhythmias on Clinic ECG n (%) (ISACHC class)</th>
<th>Presence of Arrhythmias on 24-h Holter Monitoring* n (%) (ISACHC class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM</td>
<td>2 (22.2)</td>
<td>2 (22.2) (II:1, IIIb:1)</td>
<td>2 (22.2) (II:1, IIIb:1)</td>
</tr>
<tr>
<td>MVI</td>
<td>5 (55.5)</td>
<td>3 (33.3) (II:1, IIIb:1)</td>
<td>5 (55.5) (II:4, IIIb:1)</td>
</tr>
<tr>
<td>TVI</td>
<td>1 (11.1)</td>
<td>1 (11.1) (IIIb:1)</td>
<td>1 (11.1) (IIIb:1)</td>
</tr>
<tr>
<td>HS</td>
<td>1 (11.1)</td>
<td>1 (11.1) (IIIb:1)</td>
<td>1 (11.1) (IIIb:1)</td>
</tr>
<tr>
<td>Total</td>
<td>9 (100)</td>
<td>7 (77.7)</td>
<td>9 (100)</td>
</tr>
</tbody>
</table>

*Artefacts were excluded.

between the groups for the presence of cardiac arrhythmias on both clinic ECG and 24-h Holter monitoring (P >0.05). The characteristics, cardiac diagnosis, ISACHC classification and the presence of arrhythmias in 30 dogs with and without cardiac signs were shown in Table 1 and 2.

Of 30 dogs, 19 (63.33%) had cardiac arrhythmias on 2 minute clinic ECG. Analysis of 24-h Holter records revealed the presence of cardiac arrhythmias in 29 dogs (96.66%). The arrhythmias on clinic ECG consisted of atrial fibrillation (13.33%), ST (6.66%), SB (10%), SP (3.33%), and atrioventricular block (26.66%), VPC (16.66%), SVPC (3.33%) and SVT (6.66%). The arrhythmias on Holter monitoring included atrial fibrillation (26.66%), VPC (76.66%), SVPC (23.33%) and VTAC (13.33%), ST (10%), SB (16.66%), and atrioventricular block (26.66%).

Detailed description of cardiac arrhythmias in dogs with and without cardiac signs were shown in Table 3 and 4.

The HRmax frequency recorded with clinic ECG in preclinical and clinical groups was 135.24±8.20 bpm and 154.56±16.28 bpm, respectively. The HRmax detected by 24-h Holter monitoring in preclinical and clinical groups was respectively 87.90±6.33 bpm and 106.67±7.67 bpm. A significant linear correlation was found between the HRmax detected by clinic ECG and Holter monitoring in preclinical group: y = 45.33 + 1.023x (P<0.05, r=0.46) as well as in clinical group: y = -10.39 + 1.546x (P<0.05, r=0.73). The ECG HRmax in groups was significantly higher than HRmean recorded with Holter monitoring. The 24-h Holter results showed no differences between the groups for HRmin and HRmax.

Table 1. Presence of cardiac arrhythmias on ECG and 24-h Holter monitoring in preclinical group.

<table>
<thead>
<tr>
<th>Gender (male/female)</th>
<th>14/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (years)</td>
<td>6.77±0.90</td>
</tr>
<tr>
<td>Mean BW (kg)</td>
<td>19.33±2.80</td>
</tr>
<tr>
<td>Mean BSA (m²)</td>
<td>0.67±0.07</td>
</tr>
</tbody>
</table>

Table 2. Presence of cardiac arrhythmias on ECG and 24-h Holter monitoring in clinical group.

<table>
<thead>
<tr>
<th>Gender (male/female)</th>
<th>8/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (years)</td>
<td>10.55±1.2</td>
</tr>
<tr>
<td>Mean BW (kg)</td>
<td>26.61±6.24</td>
</tr>
<tr>
<td>Mean BSA (m²)</td>
<td>0.84±1.40</td>
</tr>
</tbody>
</table>

Cardiac arrhythmias in dogs are valuable markers of heart disease (Petrie, 2005; Aptekman et al., 2010). Few publications about the prevalence of clinically significant arrhythmias have been reported in dogs with heart disease (Detweiler and Patterson, 1965). In the present study, symptomatic and asymptomatic dogs with an evidence of cardiac abnormality have been evaluated for the presence of short and long term individual electrocardiographic findings. Electrocardiographic studies in detection of cardiac arrhythmias on clinic ECG have often limitations because of the short recording period and
transient nature of the arrhythmias. Recording of 2 minute rhythm on clinic ECG comprises only 0.14% of the daily rhythm strip at 100 bpm and stress induced activation of sympathetic tone suppresses the underlying arrhythmias (Miller et al., 1999; Petrie, 2005). In the present study, 11 dogs (36.66%) with NSR on 2 minute clinic ECG had significant changes in arrhythmias on 24-h Holter monitoring that confirmed the higher sensitivity of Holter monitoring in detecting cardiac arrhythmias. However, it was thought that the causes of NSR on clinic ECG were probably associated with stress induced sympathetic activation in hospital setting, transient nature of the arrhythmias or short recording period of the clinic ECG.

The presence of supraventricular and ventricular arrhythmias may play a significant role for cardiac symptoms and the risk of increased sudden death in dogs with MVI (Sisson et al., 1999; Crosara et al., 2010). Borgarelli et al. (2008) has reported the cardiac arrhythmias detected by clinic ECG in 17 (3%) of 558 dogs with MVI. Remaining dogs (97%) had no evidence of cardiac arrhythmias on clinic ECG. Of 558 dogs; 302 (54.1%) had asymptomatic disease (class I SACHC) and 256 (45.8%) were symptomatic in class II and III SACHC. In this study, 7 (53.8%) of 13 dogs with MVI had no evidence of cardiac arrhythmias on clinic ECG but those had significant changes in cardiac arrhythmias on Holter monitoring. Of 13 dogs with MVI; 8 (61.5%) had asymptomatic disease (class I SACHC) and 5 (38.4%) were symptomatic in class II and III SACHC. The differences in the present study compared to report of Borgarelli et al. (2008) were related to the population rate. The preliminary data obtained the study of Borgarelli et al. (2008) has indicated that ventricular arrhythmias detected by Holter monitoring were more common than thought in dogs with MVI. In addition, Falk et al. (2006) has reported that sudden death is uncommon dogs with MVI. In the study presented here, the presence of ventricular arrhythmias (range 2-406) recorded with Holter monitoring in all dogs with MVI who had previously detected NSR on clinic ECG corroborated the previous reports. We did also not observed the sudden death in dogs with MVI during the study similar to the report by Falk et al. (2006). Although cardiac arrhythmias are not common in dogs with early stages MVI (Olsen et al., 1999), increased frequency of arrhythmias regardless of the class of heart failure have been reported in dogs with MVI (Crosara et al., 2010). However, several studies in dogs with MVI and DCM have shown that volume overload resulting from progressive heart disease causes atrial remodeling and supraventricular arrhythmias (Verhuele et al., 2003; O’Grady and O’Sullivan, 2004). In the study presented here, 3 asymptomatic dogs with MVI had SVPC on 24-h Holter monitoring, but in the same dogs clinic ECG revealed NSR. SVT detected by 2 minute clinic ECG was also present in 2 symptomatic dogs with MVI. Of 13 dogs with MVI, only 1 from preclinical group had no cardiac arrhythmias on Holter monitoring. However, 1 dog in preclinical group and 3 dogs in clinical group presented with persistent atrial fibrillation on clinic ECG. Of 4 dogs, 1 with DCM in clinical group had paroxysmal atrial fibrillation lasting 48 minutes on Holter.
Holter monitoring documented the increased arrhythmia detection and significant changes in cardiac arrhythmias in dogs with heart disease when the clinical ECG is not diagnostic. Similar findings have been reported in dogs (Miller et al., 1999; Wess et al., 2010). The major limitation in the study was the small population size of dogs with various heart disease. Population size of dogs with various heart disease may effect the HR and arrhythmias in groups.

In conclusion, this study represents Holter-detected significant changes in cardiac arrhythmias. 24-h Holter monitoring provides the best assessment of the presence, frequency and complexity of the cardiac arrhythmias in symptomatic and asymptomatic dogs with heart disease.

References

Acknowledgement

This PhD dissertation of Dr. Çolakoğlu was supported by grants from Ankara University Scientific Research Council (project no: 11A3338002).

Çalışma; Ankara Üniversitesi BAP koordinatörlüğü tarafından 11A3338002 proje numarasıyla desteklenmiştir doktora tez özetidir.