Pathomorphological Changes and Immunohistochemical Distribution of Border Disease Virus Antigen in Non-Nervous Tissues of Naturally Infected Fetal and Neonatal Small Ruminants

Nihat Toplu¹, Tuba Çiğdem Oğuzoğlu², Hamdi Avcı¹, Erkmen Tuğrul Epikmen¹

¹Department of Pathology, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydın, Turkey.
²Department of Virology, Faculty of Veterinary Medicine, University of Ankara, Turkey.

ABSTRACT

The present study describes the pathological changes, immunohistochemical distribution of the viral antigen and RT-PCR diagnosis in Border disease. Abortions and births of lambs and kids with poor survival rate and abnormal fleece with long and straight birth coats (hairy shaker) have been observed. Histopathologic lesions in thymus, spleen and lymph nodes included marked depletion of lymphocytes of follicular areas as well as reticuloendothelial cell hyperplasia and sinusoids were dilated and filled with macrophages. The lungs had interalveolar interstitial pneumonia characterized by infiltration of mononuclear cells and proliferation of pneumocytes in the interalveolar tissue. In five cases, the heart exhibited characteristics of focal nonsuppurative interstitial myocarditis and epicarditis. Lesions in the small intestines were consistent of edema and infiltration of the lamina propria mucosa with mononuclear cells. Immunohistochemistry demonstrated Border disease viral antigen labeling in the lungs (9/23), myocardium (7/23), tongue (5/20), skin (3/15), intestines (10/23), kidneys (6/23), urinary bladder (2/15), spleen (5/23), thymus (8/20), lymph nodes (6/23), tonsils (5/20) and liver (6/23). A 288 bp gene product of Border disease virus was amplified by the reverse transcriptase-polymerase chain reaction (RT-PCR) in RNA samples isolated from the lymph nodes and spleen of lambs and kids.

Keywords: Pestivirus, Border Disease, Immunohistochemistry, Lamb, Kid.

Border Hastalığı Virusu ile Doğal Enfekte Fötal ve Neonatal Küçük Ruminantların Non-Nervöz Dokularında Patomorfolojik Değişiklikler ve Viral antijenin İmmunohistokimyasal Dağılımı

ÖZET

Anahtar Kelimeler: Pestivirus, Border Hastalığı, İmmunohistokimya, Kuzu, Oğlak.

Received: June 14, 2012 / Accepted: December 2, 2012
Introduction

Border disease (BD) is a congenital infectious viral disease affecting sheep and goats and also wild small ruminants, including deer and chamois (Hughes et al., 1959; Löken, 1982; Carlsson, 1991; Garcia-Perez et al., 2009). BD virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae, closely related to the viruses of Bovine Virus diarrhoea Viruses 1 and 2 (BVDV 1, 2) of cattle and Classical Swine Fever Virus (CSFV) of pigs (Heinz et al., 2000). Since first described in 1959 from the border region of England and Wales, BD has caused morbidity and mortality worldwide and lead to significant economic losses in small ruminant populations (Arnal et al., 2004; De Mia et al., 2005; Thabt et al., 2005; Valdazo-González et al., 2007). Few studies on Pestivirus infections in small ruminants in Turkey have been reported (Burgu et al., 2001; Ataseven et al., 2006; Oğuzoğlu et al., 2009; Toplu et al., 2010).

Since 2004, we have encountered clinical cases associated with BD characterized by abortion, stillbirth, and neonatal mortality with nervous signs such as ataxia, tremors, paresis, paralysis and arthrogryposis in small ruminant herds in the Aegean region, Turkey (Toplu et al., 2010). On the postmortem examination, the most striking fetal lesions were porencephalic cysts in the cortex of the cerebral hemispheres, cerebellar hypoplasia, hydranencephaly and hydrocephalus. Histologically, the most conspicuous findings were nonsuppurative meningoencephalomyelitis, often accompanied by hyomyelino genesis especially in the periventricular areas and occasionally in the spinal cord. Virologic and immunohistochemical and in situ hybridisation analysis indicated that the disease was a pestivirus infection in the lambs and kids. The pestivirus isolated from a twin lambs in the Aegean region was characterized as BDV by the lambs and kids. The pestivirus isolated from a twin indicated that the disease was a pestivirus infection in areas and occasionally in the spinal cord. Virologic and immunohistochemical and in situ hybridisation analysis indicated that the disease was a pestivirus infection in the lambs and kids. The pestivirus isolated from a twin lambs in the Aegean region was characterized as BDV by sequencing of the gene products derived from a reverse transcriptase-polymerase chain reaction (RT-PCR) testing (Oguzoglu et al., 2009). Phylogenetic analysis using the fragments of the 5′-NTR and Npro of the isolates revealed that the viruses formed a distinct cluster as BDV-3 (Oguzoglu et al., 2009), which is a characteristic of certain geographical regions and similar to the findings for classical swine fever virus. On the other hand, our most recent study showed that phylogenetic analysis of the isolate from the Blacksea region revealed that the virus was identified into subgroup of BDV-3 (Toplu et al., 2012).

In our previous study, BDV’s association with apoptosis in the brain tissues were described (Toplu et al., 2010). The aim of the present study was to describe the pathologic changes and distribution of BDV antigen in non-nervous tissues of BDV infected fetal and neonatal small ruminants.

Materials and Methods

Animals

The tissues were collected from a total of 23 lambs and kids with Border disease from 5 different flocks in the provinces of Aydın and Muğla of the Aegean region. The animals were subjected to necropsy. Following the gross examination, the non-nervous tissues were fixed in 10% neutral buffered formalin, dehydrated in ethanol and embedded in paraffin wax, sectioned at a thickness of 5 μm and stained with haematoxylin and eosin (HE). Replicated sections were used for immunohistochemistry. Fresh tissue samples of the lymph nodes and spleen of the lambs and kids were examined with RT-PCR for pestiviruses.

RT-PCR

For the detection and differentiation of BDV, RT-PCR was used, essentially as described by Oğuzoglu et al., (2009). Briefly, RNA extraction was performed lymph nodes and spleen homogenates from lambs and kids using a High Pure Viral RNA Kit (Roche Diagnostic, Germany) according to the manufacturer’s recommendation. Synthesis of cDNA was carried out using random primers (Fermentas, Lithuania). The genomic region encoding the highly conserved 5’-NTR of the pestivirus genome was amplified using panpesti generic primers (324/326; Vilcek et al., 1994), Npro region primers (BD1/BD2; Vilcek and Belak, 1996), type-specific PBD1/PBD2 primers for Border disease virus and for the differential diagnosis of BVDV type 2, respectively (Vilcek et al., 1994). After amplification, DNA products were analyzed in 1% agarose-ethidium bromide gels in Tris-acetate buffer and visualized on a UV transilluminator. The cytopathogenic (cp) Morledun strain of BDV and the noncytopathogenic (ncp) BVDV strain 0712/Hanover were used as positive controls for RT-PCR.

Immunohistochemistry (IHC)

For immunohistochemical analysis, the avidin-biotin peroxidase complex method (ABC, DakoCytomation, Denmark) were used. Tissue sections (5 μm) were placed on poly-L-lysine-coated glass slides. After incubation for 2h at 40°C, the sections were dewaxed in xylene and hydrated through graded alcohols. The tissues were previously digested with 0.1% protease K for 10 min. at 37°C and the slides were washed for 10-15 min. in phosphate buffered saline (PBS) pH 7.3. Endogenous peroxidase was quenched with 3% in 70% methanol and the non specific staining was blocked by treatment with 2% normal goat serum for 10 min. Finally, the blocking serum was replaced by primary antibodies (monoclonal antibodies against mouse anti-pestitiviruses group specific antigen (WB103/105 nonstructural protein 2-3, CVL, PA0801) and mouse anti-BDV specific antigen (WS363 envelope rns, CVL, PA0825)) were used, followed by an overnight incubation at 4°C. After washing in PBS for 10 min., the sections were flooded with biotinylated goat anti-mouse immunoglobulin for 10 min. A further PBS wash, the sections were covered with streptavidin-peroxidase and incubated for 10 min. Finally, they were treated for 10-15 min. with 3,3′-Diaminobenzidine (DAB) in H2O2 chromogen. The sections were then counterstained with Mayer’s haematoxylin, washed in tap water, dehydrated in graded alcohols, and mounted. For control purposes, replicate sections of selected
infected tissues were processed, substituting normal mouse serum for mouse anti-pestivirus serum. Unless stated otherwise, all incubations were performed at room temperature in a humidified chamber.

Data Analysis of IHC Results

The scores of IHC were appointed on the basis of positively stained cells observed in 10 different areas under the 40X microscope objective. The scores were as follows: - (0+): absent; (1+): weak immunopositivity (1-3% positive cells); (2+): moderate immunopositivity (4-9% positive cells); (3+): strong immunopositivity (>10% positive cells).

Results

Necropsy Findings

The dominant gross lesions in the non-nervous tissues were thymic hypoplasia and abnormal fleece with long and straight birth coats called as “hairy shaker” (Figure 1). The tonsils and lymph nodes were edematous and enlarged, some of which were hemorrhagic. In two lambs (case nos. 2 and 3), there were petechial hemorrhages on the lateral and ventral surfaces of the tongue. Intestinal lesions was consisted of a diffuse congestion, the contents of which were often fluid in newborn lambs and kids. Two lambs (case nos. 22 and 23) had erosive-ulcerative lesions with hemorrhages in the oral and intestinal mucosa. In three animals (case nos. 1, 22 and 23), the cranial lobes of the lung had small or extensive dark red areas of hepatisation and emphysema with leakage of yellowish fluid from the cut surface. In three lambs (case nos. 2, 3 and 15), there were petechial hemorrhages in the mucosa of the urinary bladder.

RT-PCR

Tissue samples of the lymph nodes and spleen were positive for pestivirus by RT-PCR using panpesti generic primers flanking a 288 bp DNA fragment. Additionally, the samples were tested using primers BD1/BD2 for N^{pro} region and PBD1/PBD2, which discriminate between BDV and BVDV-2, amplifying 738 bp, 225 bp and 106 bp fragments, respectively. The RT-PCR exhibited the expected sizes of 225 bp DNA products for BDV (Figure 2).

Histopathological Findings

In the skin, a high proportion of the primary follicles was enlarged with conspicuously larger medulla. In some animals (case nos. 2, 3, 4 and 9), there were slight perivascular infiltrations and scattered macrophages and lymphocytes in subepithelial areas of the skin. In the thymus, there was a marked depletion of lymphocytes in follicular areas, hyperplasia of reticuloendothelial cells and sinusoids dilatation with macrophages. Similar lesions were observed in the spleen, tonsils, mesenteric and retropharyngeal lymph nodes. In many cases (12/23), the lungs showed interalveolar interstitial pneumonia characterized by infiltration of mononuclear cells and proliferation of pneumocytes in the interalveolar tissue. In five cases (case nos. 1, 5, 6, 16 and 20), the heart showed focal nonsuppurative interstitial myocarditis and epicarditis. In the liver, there were multifocal areas of coagulative necrosis, vacuolisation of hepatocytes, perivascular mononuclear infiltration in the portal areas, and lymphoid aggregations including macrophages within parenchyma. The kidneys (7/23) had hemorrhagic areas in the renal cortex and medulla. Lesions in the small intestines were consisted of diffuse edema of the submucosa, and infiltration of the lamina propria with
mononuclear cells. The Peyer’s patches had lymphoid depletion and reticuloendothelial cell hyperplasia.

Distribution of Viral Antigens in the Tissues

The ABC method showed that there was a good correlation in respect to the intensity and distribution between pestiviruses group specific antigen (WB103/105) and BDV specific antigen (WS363) in non-nervous tissues. Immunolabeling intensity and distribution of BDV antigen are represented in Table 1.

An intense immunolabeling of viral antigens was detected in epithelial lining cells of the bronchi and bronchioles as well as alveolar macrophages, mononuclear cells and pneumocytes in interstitium of the lungs (9/23) (Figure 3a). In the myocardium (7/23), myocytes exhibited granular and linear patterns of viral antigens (Figure 3b). In the tongue (5/20), a moderate to severe immunolabeling was found in epithelial cells of the mucosa, infiltrating macrophages in the propria, and occasionally in myocytes of the muscular layer (Figure 3c). The skin (3/15) showed light immunolabeling in epithelial cells of the mucosa and in infiltrating macrophages of the submucosa. In the intestines (10/23), a slight to moderate immunolabeling was seen in epithelial cells of the crypts and in mononuclear cells of the lamina propria. A moderate to strong immunolabeling of viral antigen was present in epithelial cells of the renal tubules and renal pelvis (6/23) and occasionally in epithelial cells of the urinary bladder (2/15). In the spleen (5/23), thymus (8/20), lymph nodes (6/23) and tonsils (5/20), the immunolabeling was localized to sinusoid macrophages and reticular cells. In the liver (6/23), the labeling of viral antigens was evidenced in hepatocytes and Kupffer cells and rarely in infiltrated cells. No immunolabeling was observed in the negative control slides (Figure 3d).

Discussion

As described in the present study, intrauterine infections with BDV in small ruminants can result in fetal death with resorption, mummification, abortion, stillbirths, brain malformations, intrauterine growth retardation and birth of unviable (Depner et al., 1990; Bielefeld-Ohmann et al., 2008; Garcia-Perez et al., 2009). Infected lambs can display common findings including “small weak with ataxia or paralysis, a variety of malformations including abnormally hairy fleece (so-called ‘hairy-shaker’ or ‘fuzzy’ lambs syndrome)” (Hewicker-Trautwein and Trautwein, 1994; Scherer et al., 2001; Garcia-Pérez et al., 2009). However, gross lesions with porencephaly, hydranencephaly, hydrocephalus,
and cerebellar hypoplasia are usually ascribed to blue tongue virus infection especially in the Aegean region, Turkey. The lesions described in the non-nervous tissues were consisted of nonsuppurative inflammatory reactions, which are not specific findings for BD. Moreover, less frequently, persistently infected two lambs of the present cases showed erosive-ulcerative lesions with haemorrhage in the digestive system as unusual signs, which has some features analogous to the experimentally produced mucosal disease-like lesions (Monies et al., 2004). Such cases also need to be distinguished from peste des petits ruminants, which has frequently been observed in Turkey since 1993 (Alcigir et al., 1996; Toplu et al., 2004; Toplu et al., 2012). Thus, diagnosis of BD may be difficult because of the wide variability of clinical signs, gross and histologic lesions. Therefore, immunolabelling of pestivirus viral antigen and amplification of the viral genome were essential to clarify the differential diagnosis.

Historically, all small ruminant pestivirus isolates have been referred to as BDV, (Löken, 1982; Carlsson, 1991), because the differentiation between ovine and bovine pestiviruses can be difficult due to the fact that both BVDVs and BDV are closely related serologically and often cross-neutralize with each other, furthermore both viruses can infect sheep, goats and cattle, and cause similar pathologic changes in CNS (Depner et al., 1990; Carlsson, 1991; Löken et al., 1991; Pratelli et al., 1999; Scherer et al., 2001; Bielefeldt-Ohmann et al., 2008). In the same manner, CNS inflammation characterized by nonsuppurative and/or necrotising meningoencephalomyelitis with hypomyelinogenesis is one of the most striking histological changes in small ruminants infected by BDV and BVDVs (Wohlsen et al., 1992; Pratelli et al., 1999; Scherer et al., 2001; Bielefeldt-Ohmann et al., 2008). Therefore, BDV needs differentiation from BVDVs. RT-PCR used in the present study has lead to a better discrimination between pestiviruses (Vilcek and Paton, 2000; Thabti et al., 2005; Oguzoglu et al., 2009). Moreover, Toplu et al. (2010) have developed in situ hybridization method to detect BDV RNA in formalin-fixed, paraffin embedded tissue specimens using a DIG-labelled cDNA probe. Such an advantage of this molecular method to RT-PCR allows localization and detection of BDV nucleic acid sequences in the tissue sections.

In the present study, the results of ABC method demonstrated that BDV antigens in non-nervous tissues...
was predominantly localized in the lymph nodes, thymus, spleen, lung, cardiac myocytes, intestines, liver, kidneys and, to a lesser extent, in skin and urinary bladder. The ABC method was a practical and applicable diagnostic tool for detection and discrimination of BDV. Also, IHC may propose some advantages in detection of BDV according to other methods such as immunofluorescein, and RT-PCR. These advantages include direct visualization of antigens in infected tissues, use of ordinary light microscopy, and simultaneous observation of histopathologic changes (Jung et al., 2002). Based on our laboratory results, IHC is a useful method for detection and differentiation of BDV in tissues taken from naturally infected lambs and kids, and may be a valuable technique for studying the pathogenesis in BDV infection.

References

